Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3461-3469, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297566

RESUMO

The laser diode (LD)-pumped Tm:YAP (a-cut, 3.5 at.%) laser generated a maximum ∼2.3 µm continuous wave (CW) laser output power of ∼3 W. The higher output power benefited from the positive effect of the cascade lasing (simultaneously operating on the 3H4 → 3H5 and 3F4 → 3H6 Tm3+ transition). It was the highest CW laser output power amongst the LD/Ti:Sapphire-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far. Under the cascade laser operation, the slope efficiency of the ∼2.3 µm laser emission versus the absorbed pump power increased from 13.0% to 21.4%.

2.
Opt Lett ; 48(24): 6404-6407, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099759

RESUMO

A compact Tm:GdVO4 laser pumped by a 794 nm laser diode generated 6.09 W at 2.29 µm (3H4 → 3H5 Tm3+ transition) with a high slope efficiency of 30.8% and linear laser polarization (π). The polarized spectroscopic properties of Tm3+ in GdVO4 were also revised. The peak stimulated-emission cross section of Tm3+ is 2.97 × 10-20 cm2 at 2280 nm, corresponding to an emission bandwidth of 42 nm for π-polarized light.

3.
Nat Commun ; 14(1): 7539, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985765

RESUMO

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.


Assuntos
Líquidos Corporais , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Manejo de Espécimes , Saliva
4.
Opt Express ; 31(16): 26368-26377, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710499

RESUMO

The laser diode (LD)-pumped efficient high-power cascade Tm:GdVO4 laser simultaneously operating on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transition was first reported in this paper. The cascade Tm:GdVO4 laser generated a maximum total continuous-wave (CW) laser output power of 8.42 W with a slope efficiency of 40%, out of which the maximum ∼2.3 µm CW laser output power was 2.88 W with a slope efficiency of 14%. To our knowledge, 2.88 W is the highest CW laser output power amongst the LD-CW-pumped ∼2.3 µm Tm3+-doped lasers reported so far.

5.
Opt Express ; 31(12): 18751-18764, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381308

RESUMO

We report on the first laser operation of a disordered Tm:CaGdAlO4 crystal on the 3H4 → 3H5 transition. Under direct pumping at 0.79 µm, it generates 264 mW at 2.32 µm with a slope efficiency of 13.9% and 22.5% vs. incident and absorbed pump power, respectively, and a linear polarization (σ). Two strategies to overcome the bottleneck effect of the metastable 3F4 Tm3+ state leading to the ground-state bleaching are exploited: cascade lasing on the 3H4 → 3H5 and 3F4 → 3H6 transitions and dual-wavelength pumping at 0.79 and 1.05 µm combining the direct and upconversion pumping schemes. The cascade Tm-laser generates a maximum output power of 585 mW at 1.77 µm (3F4 → 3H6) and 2.32 µm (3H4 → 3H5) with a higher slope efficiency of 28.3% and a lower laser threshold of 1.43 W, out of which 332 mW are achieved at 2.32 µm. Under dual-wavelength pumping, further power scaling to 357 mW at at 2.32 µm is observed at the expense of increased laser threshold. To support the upconversion pumping experiment, excited-state absorption spectra of Tm3+ ions for the 3F4 → 3F2,3 and 3F4 → 3H4 transitions are measured for polarized light. Tm3+ ions in CaGdAlO4 exhibit broadband emission at 2.3 - 2.5 µm making this crystal promising for ultrashort pulse generation.

6.
Opt Express ; 31(12): 19666-19674, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381377

RESUMO

The exceptional mechanical, electronic, topological, and optical properties, make bismuthene an ideal candidate for various applications in ultrafast saturation absorption and spintronics. Despite the extensive research efforts devoted to synthesizing this material, the introduction of defects, which can significantly affect its properties, remains a substantial obstacle. In this study, we investigate the transition dipole moment and joint density of states of bismuthene with/without single vacancy defect via energy band theory and interband transition theory. It is demonstrated that the existence of the single defect enhances the dipole transition and joint density of states at lower photon energies, ultimately resulting in an additional absorption peak in the absorption spectrum. Our results suggest that the manipulation of defects in bismuthene has enormous potential for improving the optoelectronic properties of this material.

7.
Opt Express ; 31(9): 13576-13584, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157242

RESUMO

We report on the cascade continuous-wave operation of a diode-pumped Tm:YVO4 laser on the 3F4 → 3H6 (at ∼2 µm) and 3H4 → 3H5 (at ∼2.3 µm) Tm3+ transitions. Pumped with a fiber-coupled spatially multimode 794 nm AlGaAs laser diode, the 1.5 at.% Tm:YVO4 laser yielded a maximum total output power of 6.09 W with a slope efficiency of 35.7% out of which the 3H4 → 3H5 laser emission corresponded to 1.15 W at 2291-2295 and 2362-2371 nm with a slope efficiency of 7.9% and a laser threshold of 6.25 W.

8.
Biosens Bioelectron ; 232: 115301, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062203

RESUMO

Wearable biosensors monitoring various biomarkers in sweat provide comprehensive and prompt profiling of health states at molecular levels. Cytokines existed in sweat with trace amounts play an important role in cellular activity modulation. Unfortunately, flexible and wearable biosensors for cytokine monitoring have not yet been achieved due to the limitation of membrane-based structure and sensing strategy. Herein, we develop a novel electrochemical fabric based on aptamer-functionalized carbon nanotube/graphene fibers for real-time and in situ monitoring of IL-6, a paramount cytokine biomarker for inflammation and cancer. This fabric system possesses flexibility, anti-fatigue ability and breathability for wearable applications and can apply to different body parts in various forms. Moreover, the electrochemical fabric can track other biomarkers by replacing the coupling aptamer, serving as a universal platform for sweat analysis. This fabric-based platform holds the potential to facilitate an intelligent and personalized health monitoring approach.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Citocinas/análise , Fibra de Carbono , Suor/química , Biomarcadores/análise , Oligonucleotídeos/análise , Monitorização Fisiológica
9.
Opt Express ; 31(4): 6704-6712, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823920

RESUMO

In this contribution, we measured the third-order nonlinear optical response of bismuth oxychloride (BiOCl) nanosheets with the open-aperture (OA) and the closed-aperture (CA) Z-scan techniques with a variable excitation intensity at 1.34 µm. The effective nonlinear absorption coefficient ßeff and the nonlinear refractive index n2 of the prepared BiOCl nanosheets with abundant oxygen vacancies were obtained under the excitation intensity. The third-order nonlinear optical susceptibility |χ(3)| was 1.64 × 10-9 esu. The nonlinear optical features of BiOCl enabled it as a superb saturable absorber for pulse laser generation. As a consequence, we demonstrated the first passively Q-switched Nd:GdVO4 laser with the BiOCl saturable absorber, producing a shortest pulse duration of 543 ns and a highest repetition rate of 227 kHz, leading to a maximum pulse energy of 74 nJ. Our findings show that BiOCl nanosheets with oxygen vacancies have large nonlinear optical sensitivities and can be exploited to generate optical pulses.

10.
Theranostics ; 12(18): 7681-7698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451864

RESUMO

Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Gotículas Lipídicas , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Graxos , Glucose , Membro C3 da Família 1 de alfa-Ceto Redutase
11.
Opt Lett ; 47(13): 3271-3274, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776603

RESUMO

In this Letter, the fabrication of large-scale (50.8 mm in diameter) few-layered MoS2 with physical vapor deposition on sapphire is described. Open-aperture Z-scan technology with a home-made excitation source at 2275 nm was applied to explore its nonlinear saturable absorption properties. The as-grown few-layered MoS2 membrane possessed a modulation depth of 17% and a saturable intensity of 1.185 MW cm-2. As a consequence, the deposited MoS2 membrane was exploited as a saturable absorber to realize a passively Q-switched Tm:YAP laser for the first time, to the best of our knowledge. Pulses as short as 316 ns were generated with a repetition rate of 228 kHz, corresponding to a peak power of 5.53 W. Results confirmed that the two-dimensional layered MoS2 could be beneficial for mid-infrared photonic applications.

12.
Anal Chem ; 94(16): 6102-6111, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35333527

RESUMO

Because of the wide abundance range of the proteome, achieving high-coverage quantification of low-abundance proteins is always a major challenge. In this study, a complete pipeline focused on all-ion monitoring (AIM) is first constructed with the concept of untargeted parallel-reaction monitoring, including the seamless connection of protein sample preparation, liquid chromatography mass spectrometry (LC-MS) acquisition, and algorithm development to enable the in-depth quantitative analysis of low-abundance proteins. This pipeline significantly improves the reproducibility and sensitivity of sample preparation and LC-MS acquisition for low-abundance proteins, enabling all the precursors ions fragmented and collected. Contributed by the advantages of the AIM method with all the target precursor acquisition by the data-dependent acquisition (DDA) approach, together with the ability of data-independent acquisition to fragment all precursor ions, the quantitative accuracy and precision of low-abundance proteins are greatly enhanced. As a proof of concept, this pipeline is employed to discover the key differential proteins in the mechanism of hepatocellular carcinoma (HCC) metastasis. On the basis of the superiority of AIM, an extremely low-abundance protein, CALB2, is proposed to promote HCC metastasis in vitro and in vivo. We also reveal that CALB2 activates the TRPV2-Ca2+-ERK1/2 signaling pathway to induce HCC cell metastasis. In summary, we provide a universal AIM pipeline for the high-coverage quantification of low-abundance functional proteins to seek novel insights into the mechanisms of cancer metastasis.


Assuntos
Calbindina 2 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Calbindina 2/genética , Carcinoma Hepatocelular/patologia , Cromatografia Líquida , Humanos , Íons/química , Neoplasias Hepáticas/patologia , Reprodutibilidade dos Testes
13.
Opt Lett ; 47(23): 6265-6268, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219223

RESUMO

Compact diode-pumped continuous wave (CW) and passively Q switched Tm:YAG lasers operating on the 3H4 → 3H5 transition are demonstrated. Using a 3.5-at.% Tm:YAG crystal, a maximum CW output power of 1.49 W is achieved at 2330 nm with a slope efficiency of 10.1%. The first Q switched operation of the mid-infrared Tm:YAG laser around 2.3 µm is realized with a few-atomic-layer MoS2 saturable absorber. Pulses as short as 150 ns are generated at a repetition rate of 190 kHz, corresponding to a pulse energy of 1.07 µJ. Tm:YAG is an attractive material for diode-pumped CW and pulsed mid-infrared lasers emitting around 2.3 µm.

14.
Opt Lett ; 47(21): 5501-5504, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219254

RESUMO

In this Letter, a watt-level laser diode (LD)-pumped ∼2.3-µm (on the 3H4→3H5 quasi-four-level transition) laser is reported based on a 1.5 at.% a-cut Tm:YVO4 crystal. The maximum continuous wave (CW) output power obtained is 1.89 W and 1.11 W with the maximum slope efficiency of 13.6% and 7.3% (versus the absorbed pump power) for the 1% and 0.5% transmittance of the output coupler, respectively. To the best of our knowledge, the CW output power of 1.89 W we obtained is the highest CW output power amongst the LD-pumped ∼2.3-µm Tm3+-doped lasers.

15.
Anal Chem ; 94(2): 758-767, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932315

RESUMO

Limited by the rare efficient extraction system in extracting hydrophobic membrane protein complexes (MPCs) without compromising the stability of protein-protein interactions (PPIs), the in-depth functional study of MPCs has lagged far behind. In this study, the first systematic screening of ionic liquids (ILs) was performed and showed that triethylammonium acetate (TEAA) IL exhibited excellent performance in stabilizing PPIs, which was further confirmed by molecular docking simulations. By combining TEAA with the conventional detergent Nonidet P-40 (NP-40), a novel IL-based extraction system, i-TAN (TEAA IL with 1% NP-40), was proposed, which demonstrated superior performance in extracting and stabilizing MPCs, attributed to its larger size, more uniform distribution, and closer-to-neutral microenvironment of micelles. Extraction of MPCs with i-TAN allowed the confident identification of more hydrophobic EGFR-interacting proteins that are easily dissociated during the extraction process. Quantitative analysis of the difference in EGFR complexes between trastuzumab-sensitive and trastuzumab-resistant breast cancer cells provided comprehensive insights to understand the drug resistance mechanism, suggesting that i-TAN has great potential in interactomics and functional analysis of MPCs. This study provides a novel strategy for MPC extraction and downstream processing.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas de Membrana , Simulação de Acoplamento Molecular
16.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771073

RESUMO

Based on density functional theory, we have systematically investigated the geometric, magnetic, and electronic properties of fluorographene with three types of vacancy defects. With uneven sublattice, the partial defect structures are significantly spin-polarized and present midgap electronic states. The magnetic moment is mainly contributed by the adjacent C atoms of vacancy defects. Furthermore, the strain dependence of the bandgap is analyzed and shows a linear trend with applied strain. This defect-induced tunable narrow bandgap material has great potential in electronic devices and spintronics applications.

17.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685046

RESUMO

In the current study, layered metallic vanadium disulfide (VS2) is fabricated by a liquid-phase exfoliation method, and its microstructures as well as optical characteristics are investigated. Based on first-principles calculations, the band structure and density of the states of both bulk T-VS2 and monolayer H-VS2 are illustrated, showing the metallic behavior with a zero band gap. By using VS2 as the saturable absorber in a doubly Q-switched Tm:YAP laser with an EOM, the Q-switching laser pulses at 2 µm with 22 ns and 200 Hz are generated, corresponding to the single pulse energy of 755 µJ and the peak power of 34.3 kW. The coupled rate equations of the doubly Q-switched laser are given, and the numerical simulations agree with the experimental results. The results indicate that VS2 is a promising nanomaterial due to its nonlinear optical property. The doubly Q-switched laser demonstrates a high level of performance in reducing pulse width and enhancing pulse peak power.

18.
Opt Express ; 29(16): 24684-24694, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614819

RESUMO

In this paper, two-dimensional material Sb2Te3 nanosheets are fabricated and the optical nonlinear response is investigated. A laser diode (LD) end-pumped doubly Q-switched Tm:YAP laser with electro-optic modulator (EOM) and Sb2Te3 nanosheets based saturable absorber (SA) is presented. The shortest pulse duration of 38 ns is achieved at the pulse repetition frequency of 100 Hz, corresponding to the highest peak power of 111.8 kW. The double Q-switching technique shows the advantages of pulse duration compression and peak power improvement. The coupled rate equations for the doubly Q-switched laser are developed and the corresponding numerical simulation agrees with the experimental results. We believe that the Sb2Te3 is a potential nanomaterial for the application in optoelectronic field.

19.
Sens Actuators B Chem ; 348: 130708, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34511726

RESUMO

Molecular diagnosis, which plays a major role in infectious disease screening with successful understanding of the human genome, has attracted more attention because of the outbreak of COVID-19 recently. Since point-of-care testing (POCT) can expand the application of molecular diagnosis with the benefit of rapid reply, low cost, and working in decentralized environments, many researchers and commercial institutions have dedicated tremendous effort and enthusiasm to POCT-based biosensing for molecular diagnosis. In this review, we firstly summarize the state-of-the-art techniques and the construction of biosensing systems for POC molecular diagnosis. Then, the application scenarios of POCT-based biosensing for molecular diagnosis were also reviewed. Finally, several challenges and perspectives of POC biosensing for molecular diagnosis are discussed. This review is expected to help researchers deepen comprehension and make progresses in POCT-based biosensing field for molecular diagnosis applications.

20.
Nanotechnology ; 32(37)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34107461

RESUMO

In this paper, the Nb2CTxMXene nanosheets were fabricated and the corresponding microstructures were investigated. The nonlinear optical response was illustrated by open aperture Z-scan and I-scan methods. The ground and the excited state absorption cross-sections of 2D Nb2CTxMXene were also investigated. As the saturable absorber (SA), the Nb2CTxMXene was applied in the passively Q-switched Tm:YAP laser. 1.96µs Q-switched pulses with 3.97 W peak power were achieved at the repetition frequency of 80 kHz. Further theoretical model was built by using the coupled rate equations in simulating the dynamic process of the passively Q-switched Tm:YAP laser. The numerical simulation results are fundamentally in agreement with the experimental results, which proves the Nb2CTxMXene can be a good potential nanomaterial for further optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...